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Gravity currents, driven by horizontal differences in buoyancy, play a central role
in fluid mechanics, with numerous important natural and industrial applications.
The first quantitative, fluid-mechanical study of gravity currents, by von Kármán in
1940, was carried out before the birth of this Journal; the next important theoretical
contribution was in 1968 by Brooke Benjamin, and appeared in this Journal more
than a decade after its birth. The present paper reviews some of the material that has
built on this auspicious start. Part of the fun and satisfaction of being involved in
this field is that its development has been based on both theoretical and experimental
contributions, which have at times been motivated and supported by field observations
and measurements.

1. Introduction
Gravity currents occur whenever fluid of one density flows primarily horizontally

into a fluid of different density. (Predominantly vertical motion is described more
naturally as plumes and involves different principles of fluid mechanics, Turner 1979.)
There are numerous natural and industrial occurrences of gravity current motions.
These include: the spreading of honey on toast; the propagation of a relatively cold
(and generally slightly wet) sea breeze, as happens occasionally across Britain and so
regularly on the East coast of Australia, across Canberra, and at Perth (the Fremantle
doctor); the occasional outflow of relatively saline water from the Black Sea through
the Bosporous into the Sea of Marmara; the intrusion of giant umbrella clouds into
the atmosphere following a volcanic eruption; the destructive evolution of a snow
avalanche; and the flow of molten glass across a horizontal surface to make sheet
glass.

This paper reviews the conceptual foundations used to understand and evaluate
the evolution of gravity currents. Some of the latest results in specialized areas are
highlighted. After an introduction, the paper ranges through the principal effects
due to: flows at low Reynolds numbers; compositional density differences; density
differences due to dilute particulate matter; density differences due to concentrated
particulate matter; and, finally, the motion of a granular medium (with very
little influence of the interstitial fluid). In addition, some effects due to permeable
boundaries, rotation and propagation into a porous medium or an ambient which is
either stratified or uniformly flowing will be considered.

The first quantitative study of gravity currents was undertaken by von Kármán
(1940), who was asked by the American military to evaluate under what wind
conditions poisonous gas released would propagate forward to envelop the enemy,
rather than backwards to cause havoc among the troops who released the gas. Using
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Bernoulli’s theorem, von Kármán showed that the velocity, u, of the nose followed by
a layer of depth h, of relatively heavy fluid with density excess �ρ over that of the
atmosphere ρo, was given by

u/(g′h)1/2 = Fr, (1.1)

where the reduced gravity g′ = �ρg/ρo, g is the acceleration due to gravity and the
Froude number, Fr , was evaluated by von Kármán to be

√
2. This is the condition

that has generally been applied at the nose of a current propagating into a very
deep ambient at high Reynolds number Re = uh/ν, where ν is the kinematic
viscosity.

Such was the reputation of von Kármán that (1.1) and the paper in which it
appeared quickly became celebrated, even though von Kármán had not considered
the effects of wind in the atmosphere or pointed out that (1.1) is but one equation for
the two unknowns u and h. In 1968, Brooke Benjamin, who had just ceased being the
co-editor (with George Batchelor) of this Journal, revisted the problem and argued
that von Kármán had used Bernoulli’s theorem incorrectly (by taking a contour
through a turbulent region) and rederived (1.1) by the use of a momentum integral,
or flow force as Benjamin called it. Benjamin expressed surprise that he obtained the
same result as von Kármán, and was clearly somewhat distressed by this. However,
given that the starting point of both scientists was an (admittedly different) integral
of the Euler equations, there was not any possibility that they could have arrived at
a different result. In addition, since u, g′ and h are the only variables in the problem,
the non-dimensional quantity u/(g′h)1/2 has to be a constant. If the depth of the
ambient, H , is comparable to h then the Froude number becomes a function of h/H

(Huppert & Simpson 1980).
Expressions in the form of (1.1) have been used in (almost) all studies of

gravity currents propagating at high Reynolds number as a form of conservation of
momentum and have sometimes been expressed as indicating that, at high Reynolds
number, a gravity current is controlled at the nose. Gravity currents propagating
at low Reynolds number behave quite differently, and, indeed, are not generally
controlled, or even influenced, at the nose at all.

The next section briefly reviews the approach to studying low-Reynolds-number
gravity currents, before continuing the above development for high-Reynolds-number
currents. The material is biased towards areas I have been involved with and
know best. I hope this stance is understandable, though it means that a number
of important contributions have not been mentioned. An alternative, interesting view
on the fundaments and applications of gravity current flows is contained in Simpson
(1997).

2. Viscous gravity currents
Viscous gravity currents propagate under a balance between viscous and buoyancy

forces (and the two fluids are usually considered essentially immiscible). In all problems
so far solved the viscous fluid has been assumed to spread as a thin layer and the
concept of lubrication theory has been appropriate. Thus the velocity profile is
parabolic and conservation of mass leads to a governing nonlinear partial differential
equation in space and time for the unknown free-surface height h(x, t) as depicted
in figure 1(a). Thus, for example, for a current spreading along a horizontal base
in either a wide channel or an axisymmetric situation, the governing equation is
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Figure 1. A sketch of a propagating gravity current showing the notation and (a) a
parabolic velocity profile for Re � 1 and (b) the uniform velocity profile for Re � 1.

(Barenblatt 1978; Huppert 1982a)

∂h

∂t
− β

xn

∂

∂x

(
xnh3 ∂h

∂x

)
= 0, (2.1)

where β = 1
3
g/ν, n= 0 in Cartesian coordinates and n= 1 in radial coordinates (where

x is interpreted as the radius). Equation (2.1) is valid under the assumption that the
Bond number B = ρgl2/T � 1, where T is the surface tension and l the horizontal
extent of the current, so that surface tension effects along the interface and nose can
be neglected. To (2.1) must be added an overall volume conservation relationship,
which is generally taken of the form∫ xN (t)

o

(2πx)nh(x, t) dx = qtα, (2.2)

where xN (t) is the extent of the current and the volume is assumed to be given by qtα ,
where, for example, α = 0 represents a constant-volume current and α = 1 represents
a current fed by a constant flux.

A similarity form of solution is easily obtained for (2.1) and (2.2) and is written as
(Huppert 1982a, 1986)

h(x, t) = ζ
2/3
N (q2−n/β)1/(5−n)t [(2−n)α−1]/(5−n)Φ(ζ/ζN ), (2.3)

where the similarity variable

ζ = (βq3)−1/(5+3n)xt−(3α+1)/(5+3n) (2.4)

and ζN (α, n) is determined by (2.2). The similarity variable (2.4) indicates immediately,
with no further analysis, that the extent of the current is given by

xN = ζN (βq3)1/(5+3n)t (3α+1)/(5+3n). (2.5)

Experimental results for the rate of propagation of such viscous spreading are in
excellent agreement with the theoretical determination (Huppert 1982a, 1986, 2000).
The motivation for the original study was the availability of wonderful data on the
spreading of the lava dome formed in the crater of the Soufrière of St Vincent in
the West Indies after the eruption of 1979. The resultant lava dome slowly increased
in volume, and spread horizontally for five months across the crater floor, by which
time the pancake-shaped dome had a height of 130 m, a mean diameter of 870 m
and a volume of 5 × 107 m3 (Huppert et al. 1982). Observations of the volume
then indicated that α = 0.66, which should lead to a radial time dependence, from
(2.5), of (3α + 1)/8 = 0.37, in good agreement with the measured value of 0.39. In
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Figure 2. A series of lava domes on Venus.

addition, (2.5) can then be inverted to determine a value for the kinematic viscosity
of 6× 107 m2 s−1. Considerable further work has been done to make this initial model
more realistic by including the effects of compressibility of the interstitial gas in the
magma (Jaupart 1991), solidification of the thin upper carapace of the lava dome
(Fink & Griffiths 1990, 1998; Griffiths 2000) and non-Newtonian rheology of the
spreading fluid (Balmforth, Burbidge & Craster 2001; Balmforth, Craster & Sassi
2004). The theoretically determined shape, (2.3), has also been successfully used to
describe the shape of the numerous lava domes recently observed on Venus (McKenzie
et al. 1992), a photograph of which is shown in figure 2.

The flow at low Reynolds number of a viscous fluid down a slope occurs in
many different situations: the splattered wet mud down a car windscreen; liquid
detergent on a slanted plate; and rainwater down the roof of a glass conservatory. A
fundamental problem in this area, which has acted as the foundation of many further
studies, is the question of whether a broad band of viscous fluid, uniform in depth
across the slope, can continue to flow down the slope in a fashion independent of the
cross-slope coordinate. This situation was first considered by Huppert (1982b) who
showed, again under the assumption that B � 1, that there is a parabolic velocity
profile and that the free surface h(x, t) is governed by

∂h

∂t
+ (g sin θ ′/ν)h2 ∂h

∂x
= 0, (2.6)

where x is the coordinate down the slope, which is inclined at angle θ to the horizontal.
By use of either the theory of characteristics or by similarity theory, Huppert showed
that the appropriate theoretical solution of this two-dimensional flow is

h = (ν/g sin θ)1/2 x1/2 t−1/2 (2.7a)

for

0 � x < xN = (9A2g sin θ/4ν)1/3t1/3, (2.7b)
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where A is the initial cross-sectional area of the current. The relationship (2.7a)
indicates that at any time the free surface increases in thickness down the slope like
the square root of the coordinate down the slope until x = xN at which point the
current ends (abruptly in this solution that neglects surface tension) and that at any
point down the slope, once the current has passed overhead, its thickness decreases
like the square root of time.

To test the validity of this theoretical prediction, Huppert conducted experiments
with different viscous fluids flowing down slopes of different angles to the horizontal,
an example of which makes up movie 1.† Initially the motion was virtually
independent of the cross-slope coordinate and in good agreement with the predictions
of (2.7). However, after some time the flow front seemed spontaneously to develop
a series of small-amplitude waves of fairly constant wavelength across the slope.
The amplitude of the waves increased in time as the maxima (points furthest down
the slope) travelled faster than the minima. The wavelength remained unaltered. For
silicon oils the subsequent shape was a periodic, triangular front with tightly rounded
maxima, connected, by very straight portions at an angle to the slope, to extremely
pointed minima. For glycerine, the shape was also periodic, though with much less
tightly rounded maxima, again connected by extremely straight portions, almost
directly down the slope, to very broad minima. To my knowledge no other shape
has been seen for different fluids. The initial instability must be due to the effects of
surface tension, which were neglected in the two-dimensional analysis. Incorporating
these effects at the tip, Huppert was able to show that the wavelength of the instability
was represented well by

λ =
(
7.5A1/2T/ρg sin θ

)1/3
, (2.8)

independent of the coefficient of viscosity, which only sets the time scale of the
instability and its onset.

3. Compositional-driven currents
In (almost) all situations a current whose density difference is due to a dissolved

component of negligible diffusivity, such as salt, propagates in such a way that its
horizontal extent is generally very much larger than its vertical extent. A natural
example of such a current is shown in figure 3 and laboratory examples make up
movie 2. Under the assumption that the Reynolds number is large, the balance is then
between inertial and buoyancy forces and standard shallow-water theory (Whitham
1974) can be applied. Alternatively, Huppert & Simpson (1980) introduced the concept
of a ‘box model’, which considers the simple model that results from assuming the
current to evolve through a series of equal-area rectangles, or equal-volume cylinders,
as appropriate, with no variations of any properties in the horizontal. (An integral
justification of this approach is given in the Appendix of Harris, Hogg & Huppert
2001). With the assumption that the ambient is sufficiently deep that the Froude
number is constant, this approach leads to the relationship

xN = C(Fr)(g′A)(2−n)/6t (4−n)/6, (3.1)

where C(Fr) is dependent only on the Froude number and A is the cross-sectional
area in two dimensions (n = 0) and the volume in three dimensions (n = 1) of the

† The movies referred to are available as a supplement to the online version of the paper.
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Figure 3. A large-Reynolds-number compositional gravity current over the Los Angeles
Basin. Almost every morning the sun shines down on Southern California and the neighbouring
Pacific Ocean. The atmosphere above the land surface becomes relatively warm and less dense
than that above the sea. The horizontal density difference results in a gravity current of
relatively cold, moist air, which spreads across the California countryside (photographer:
G. R. Stevens).

current. Note that g′ and A only appear as the product g′A, which is conserved even
if mixing between the two fluids occurs.

The use of similarity theory applied to the shallow-water equations (Hoult 1972;
Chen 1980; Bonnecaze, Huppert & Lister 1993; Bonnecaze et al. 1995) leads to a
relationship which differs only in the pre-multiplicative constant in (3.1), and then
only by a relatively small quantitative amount. (But that is the power of the correct
dimensional constraints!) However, before a current released from behind a lock
enters the self-similar propagation phase described by (3.1), it goes through a rather
different phase, described as ‘slumping’. Both experiments and shallow-water models
indicate that for between 3 and 10 lock-lengths, which increases as the ratio h/H

decreases, the velocity of propagation in the slumping phase is constant (Huppert &
Simpson 1980; Rottman & Simpson 1983).

Entrainment of ambient fluid into the flow has been investigated both theoretically
and experimentally (Hallworth et al. 1993, 1996) by following the intrusion of an
alkaline current into an acidic ambient. Entrainment takes place almost entirely at
the head of the current owing to shear instabilities on the interface between the
current and the ambient and by the over-riding of the (relatively less dense) ambient
fluid as the head propagates over it. An entrainment or dilution ratio E, defined
as the ratio of the volumes of ambient and original fluid in the head, which hence
must be non-negative, can be shown by dimensional analysis, and was confirmed by
experiment, to be independent of g′, and to be given for a gravity current in a channel
by E = [1− c1yN/A1/2

s ]−c2 −1, where As is the cross-sectional area of fluid in the head
at the end of the slumping phase, yN is the position of head beyond the slumping
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point, and c1 ≈ 0.05 and c2 ≈ 1.5 are empirical constants determined by the roughness
of the floor.

In an independent study, Hacker, Linden & Dalziel (1996) conducted three
experiments during which they measured the spatial and temporal variations of
the intensity of light leaving the tank from a uniformly adjusted background lighting
after it had been attenuated by absorption by the dye through which it passed. From
the intensity they back calculate the concentration of dye and hence the amount of
mixing. These calculations indicate a complex internal density structure and suggest
that substantial mixing occurs in the early stages of the flow. This is in contrast to the
detailed results of Hallworth et al. (1993, 1996) from many experiments, who observe
that there is comparatively little entrainment into the head that emerges at the end
of the slumping phase. A resolution of these different conclusions is awaited.

As the current from the instantaneous release of a constant volume flows either
along a two-dimensional channel or away from the origin in an axisymmetric situation,
the spreading makes the depth decrease, and thus, by the Froude number condition at
the front (1.1), the velocity of the front decreases also. What happens, however, if the
fluid is released from an outer radius and travels inward in either a sector or the full
axisymmetric case? Examples where this might occur in nature include a bore entering
a narrowing channel and a turbidity current generated along the edge of a lake.
Because the fluid spreads horizontally as it propagates, the height at the nose should
decrease. However, because of the geometrical constraints, as the fluid approaches the
centre the height should increase. Which effect dominates? Somewhat to my surprise,
both happen – but sequentially. In a series of experiments, backed up by numerical
integration of the shallow-water equations, Hallworth, Huppert & Ungarish (2003)
showed that the current first decreases in thickness and slows down, until it is about
halfway between the release point and the centre; thereafter the thickness increases,
as does the velocity. This can be rather simply understood mathematically from just
the axisymmetric continuity equation

∂h

∂t
+

∂(uh)

∂r
+

uh

r
= 0, (3.2)

where r is the radial coordinate measured from the centre. In a balance of terms
usually ∂/∂r ∼ 1/r . However in this case, the rate of change with radius, ∂/∂r ,
represents the change with the inward radial scale, and therefore ∼ 1/(Ro − r), where
Ro is the (outer) radius of release. Incorporating this into (3.2) leads to

∂h

∂t
∼ uh

(
1

Ro − r
− 1

r

)
, (3.3)

which changes sign at r = Ro/2 and therefore indicates that the turnover point
is about halfway. An accurate similarity solution of the second kind (Barenblatt
1996) has recently been obtained by Slim & Huppert (2004) which examines, via a
phase-plane analysis, the motion just as the current reaches the centre.

4. Particulate-laden currents
When heavy (or possibly relatively less dense) particles drive the flow the major

new addition to the advective effects is that the particles fall (or rise) out of the flow
and the driving buoyancy continually decreases. Examples of this form of motion are
the terrifying flows seen in lower Manhattan on September 11, 2001 and the awesome
hot ground-hugging pyroclastic flows which can be the life-threatening destructive
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Figure 4. A hot, particle-laden gravity current, or pyroclastic flow, from the eruption
of Mt. Unzen in Japan.

Figure 5. A pyroclastic flow on Montserrat in the Caribbean (photographer: R. S. J. Sparks).

result of volcanic eruptions such as occurred recently at Pinatubo in Indonesia, Unzen
in Japan (figure 4) and Montserrat in the Caribbean (figure 5). After a sufficient mass
of particles has dropped to the ground, so that the bulk density of this hot flow is
no longer greater than that of the surrounding atmosphere, the current can suddenly
rise quite dramatically, taking much of the remaining particulate matter high into the
atmosphere. Laboratory simulations of such flows are shown in movies 2(c–e).
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The approach most frequently taken to analyse the sedimentation if the
concentration is not too large is to assume that the (high-Reynolds-number) flow
is sufficiently turbulent to maintain a vertically uniform particle concentration in the
main body of the current. However, at the base of the flow, where the fluid velocities
diminish appreciably, the settling of particles occurs at the (low-Reynolds-number)
Stokes velocity Vs in otherwise quiescent fluid. Quantitatively, this indicates that,
neglecting particle advection for the moment and assuming that the particles are all
of one size, if Np (which is possibly a function of time and position) denotes the total
number of particles per unit horizontal area in a layer of depth h, the change of Np

in time δt, δNp , due only to the sedimentation, is given by δNp = −VsC0δt , where
C0 is the (number) concentration (per unit volume) just above the base of the flow.
Vigorous turbulent mixing implies that C0 = Np/h, which (on taking the appropriate
infinitesimal limits) indicates that dNp/dt = −VsNp/h, a relationship which has been
verified by experiments in which the particles were suspended in a thermally con-
vecting fluid (Martin & Nokes 1988) and used very successfully in many investigations
since then. Incorporation of advection of particles by the mean flow then results in

D

Dt
φ ≡ ∂φ

∂t
+ u · ∇φ = −Vsφ/h, (4.1)

where φ is the volume concentration of particles.
Shallow-water equations incorporating (4.1) are easily derived (Bonnecaze et al.

1993, 1995; Huppert 1998). There are no similarity solutions and recourse, in general,
has to be made to numerical solution. There is very good agreeent between the nume-
rical solutions and experimental determinations carried out specially to test them.

Aside from numerical solutions, it is also possible to develop asymptotic analytic
solutions based on the smallness of βS = VS/(g

′
oho)

1/2, where g′
o is the initial reduced

gravity of the system (Harris et al. 2001). This is an example of the interesting problem
which can be stated in general as the nonlinear partial differential equation

N1[Φ(x, t)] = εN2[Φ(x, t)], (4.2)

where N1 and N2 are nonlinear operators in some spatial coordinate x and time t .
For ε ≡ 0 there is a similarity solution to (4.2) and a special value of x, x∗ say, such
as that at the nose of the current, which increases continually with time, of the form
x∗ = f (t). However, for ε 
= 0, no matter how small, (4.2) does not have a similarity
solution and eventually, for sufficiently large t, x∗ attains a constant. Thus, in the
style of singular perturbation problems, for sufficiently large t the solution for ε = 0
departs from solutions for ε � 1. It must, on the other hand, be possible to obtain
asymptotic solutions to (4.2) in a perturbative sense. Such a technique is constructed,
in part, in Harris et al. (2001).

When there is an external flow present, as originally put to von Kármán, the
propagation of the current is significantly influenced, and in a different way if it
is propagating with the ambient flow or against it. Hallworth, Hogg & Huppert
(1998) and Hogg, Huppert & Hallworth (2005) initiated an analysis and a series of
laboratory experiments to investigate this case. In their first paper, they showed that
for an instantaneous release of a fixed volume of dense fluid into a channel, the flow
was dependent on the single non-dimensional parameter Λ = UA/(l2∞VS), where U is
the effective mean external flow experienced by the current, evaluated to be 0.6 times
the actual current (in agreement with an earlier evaluation by Simpson & Britter 1980),
A is the cross-sectional area (or volume per unit width) of the fluid instantaneously
released at the base of the flow, the reduced gravity of the particles of density ρP is
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Figure 6. The theoretical prediction and experimental data of the maximum non-dimensional
upstream penetration of a particulate gravity current in a uniform flowing ambient, x∗/l∞, as
a function of Λ = UA/(VSl

2
∞) for three different particle sizes.

given by g′
P = (ρP −ρa)g/ρa, ρa is the density of the ambient and l∞ = (g′

P φoA
3/V 2

s )1/5.
The parameter Λ represents the ratio of the mean external velocity to the settling
velocity of the particles. When Λ is small (little effect of the flow in the ambient),
the flow is roughly the same upstream or downstream. As Λ increases the effects of
the flow in the ambient increase and the upstream flow is considerably restricted.
However, even for large Λ there will still be some upstream propagation – much to
the disbelief and then dismay of the government official who asked me to carry out
this work in order to show that a new dredging technique, in which mud suspended
from the bottom of the harbour by jetting high-velocity water at it, would be swept
out to sea by the outgoing tidal flow and not propagate at all upstream across
the harbour and contaminate the highly valuable stocks of fish and oysters there!
Figure 6 presents the theoretically determined maximum non-dimensional upstream
distance of a particulate intrusion in a uniformly flowing ambient as a function of
Λ and the laboratory experimental data obtained using various size particles. The
agreement shown is excellent; and one of the best I have ever obtained in my career,
and hence my pleasure with it.

Extensions of this idea to an axisymmetric (rather than line) source and to a
constant input flux (rather than an instaneous release from a point source) are
summarized in Hogg & Huppert (2001a, b) and Hogg et al. (2005) respectively, where
the relevant parameters and shape of the current are carefully discussed.

An alternative approach is to develop full-scale CFD codes, or Navier–Stokes
solvers, to follow particle-driven flows. This has been done with considerable success
by Ungarish (Hallworth, Huppert & Ungarish 2001 and Ungarish & Huppert 2004)
who compared the results with experimental data and the predictions of a one-layer
shallow-water model. Numerical codes for this problem have also been described in
Dalziel & Linden (1997) and Härtel, Meiburg & Necker (2000).

5. Additional effects
The preceding four sections have detailed some of the fundamental relationships

for the propagation and evolution of a gravity current. Many other special effects are
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possible. We will describe some of these under the headings of: flows over permeable
boundaries; flows in porous media; flows into a stratified ambient; and effects of
rotation.

5.1. Flows over permeable boundaries

There are many natural and industrial situations where a gravity current flows over
a permeable boundary and seeps into it. Examples include the protection of liquid-
containing structures by surrounding them with a deep gravel bed, the seepage of
tidal inflow up a beach and the everyday occurrence of honey seeping into toast.
The most important new ingredient is that fluid from the current continuously seeps
through the boundary, which reduces the volume of the current and its horizontal
propagation must eventually cease.

The flow of the current at low Reynolds number was considered by Acton,
Huppert & Worster (2001). The parabolic velocity profile in the current is augmented
by a sink term in the local continuity equation which leads in two dimensions, the
only situation that has been investigated, to

∂h

∂t
− β

∂

∂x

(
h3 ∂h

∂x

)
= −(kg/ν)(1 + h/l), (5.1)

which takes the place of (2.1). The term on the right-hand side represents the Darcy
flow driven by a vertically linear pressure gradient into the porous medium below,
which is categorized by the intrinsic permeability of the medium k, and l denotes
the length of the current. In contrast to the situation for an impermeable boundary,
(5.1) has a similarity solution only for the special case of α = 3 (V∝t3), for which
the flux into the current at the origin just balances that out of the current through
the permeable boundary. For other values of α solutions of (5.1) must be obtained
by numerical integration. This was done by Acton et al. (2001), who also carried
out experiments to compare observational data on the length of the current as a
function of time with their numerical solution. The result, as shown in figure 7,
was an extremely good comparison, with a final run-out length which scales with
SH = (A2k)1/3 for α = 0, where A is the cross-sectional area, or volume per unit width.
For α < 3 all currents eventually stop; for α � 3 all currents continue to propagate
because the incoming flux overpowers the seepage. Note the similarity in concept
between the slow loss of driving force due to seepage, considered here, and the loss
of buoyancy due to slow particle fallout, considered in § 4. The general approach
discussed there, as outlined in Harris, Hogg & Huppert (2001, 2002), has not been
applied to this area, though no doubt it could be done so fruitfully.

When the current propagates at high Reynolds number the balance of forces is
of course different, but the importance of seepage through the boundary is still
paramount. This problem was initially considered by Thomas, Marino & Linden
(1998) and then extended by Ungarish & Huppert (2000). The latter solved the
shallow-water equations for a two-dimensional geometry numerically as well as
obtaining analytical box-model solutions in both rectangular and axisymmetric
geometries. This allowed closed-form solutions for the extent of the current as a
function of time and its final extent to be determined, which were in fair agreement
with both the two-dimensional experiments carried out by Thomas, Marino & Linden
(1998, 2004) and the numerical solutions.
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Figure 7. The non-dimensional length of a low-Reynolds-number gravity current flowing over
a permeable boundary as a function of the dimensionless time for seven different experiments.
The solid curve is the theoretical prediction determined from numerical integration of (5.1)
and the dashed line is the similarity solution for an impermeable boundary given by (2.7).

5.2. Flows in porous media

The intrusion of a gravity current into a saturated porous medium has considerable
similarities to the propagation of viscous gravity currents as described in § 2. The two-
dimensional flow over an impermeable boundary has a similarity form of solution to
the governing nonlinear advection-diffusion equation. For the instantaneous release
of a finite volume of fluid the current spreads like t1/3 and has a parabolic thickness
distribution. This rate of spread and functional form of the height of the current was
confirmed by experiments in Hele-Shaw cells, which yielded good agreement with the
predictions, even down to the pre-multiplicative constants (Huppert & Woods 1995).
They also developed the theory and forms of solutions for a two-dimensional current
propagating down an impermeable incline.

The axisymmetric situation has recently been investigated by Lyle et al. (2005).
Their investigation was motivated by the problem of carbon dioxide sequestration. At
the moment approximately 23 Gigatonnes of carbon dioxide are anthropogenically
produced each year and the emission of such large amounts of carbon dioxide, a
greenhouse gas, could drastically change aspects of the radiation balance in the
atmosphere and threaten global climate. One way to ameliorate this problem is to
store carbon dioxide, in a liquid state, in gigantic porous reservoir rock at considerable
depth beneath the Earth’s surface. This is currently being done at a number of sites
around the world, most notably since 1996 at the Sleipner gas field in the North Sea.
Lyle et al. (2005) showed that the axisymmetric spreading as a result of a constant
input flux has a radius proportional to t1/2 and carried out experiments to verify
this conclusion. We are currently considering extra effects due to sloping and/or
impermeable boundaries (Vella & Huppert 2006) as well as applying the detailed
results to interpreting the geological observations (Bickle et al. 2006).
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A study which combines effects described in this and the last subsection considers
the flow of a gravity current in a porous medium above a boundary of much lower
permeability (Pritchard, Woods & Hogg 2001). They determine that, as before, the
slow drainage through the slightly permeable lower boundary restricts the current to
a finite length. This set-up is relevant to the seepage of oil or gas through layered
media.

5.3. Propagation under the base of a stratified ambient

In all the foregoing discussion, it has been assumed that the ambient is homogeneous
and not influenced by the intruding current (except for the two-layer calculations of
Bonnecaze et al. 1993; Hallworth et al. 1998; Hogg et al. 2005). However, in both the
atmosphere and the oceans the ambient may be stratified; and it immediately raises the
question of why the solutions so far obtained are applicable in these more complicated,
natural situations – or has something important been left out? What clearly has been
left out of the homogeneous models is the possibility of exciting internal waves in the
ambient by the propagation of the current, as seen clearly in movie 3. Viewed from
another angle, the question that should be considered is what fraction of the potential
energy stored at the outset in the intruding fluid is lost to internal wave motions,
in contrast to that converted to the kinetic energy of the current and that which is
dissipated. The first investigation of the influence of a stratified ambient considered
the propagation of a saline current below a linearly stratified saline ambient in a
rectangular container (Maxworthy et al. 2002). Their study was a combination of
laboratory and numerical experiments. The numerical solutions, obtained from a full
Boussinesq formulation, were in very good agreement with their measurements. They
focused attention on the speed of propagation of the nose during only the initial
stage of release from behind a lock, for which a good agreement between theory and
numerical computation was obtained. Ungarish & Huppert (2002) then extended this
investigation by determining appropriate analytical solutions. Using the methods of
characteristics on the nonlinear shallow-water equations, which neglects the influence
of flow and waves in the ambient, they were able to obtain solutions for the front
velocity as a function of the parameter S, defined as the ratio of the density difference
between the fluid that makes up the bottom of the ambient and that at the top to the
density difference between the fluid of the incoming current and that at the top. The
results of their calculations, compared with the experimental results of Maxworthy
et al. (2002), are shown in figure 8. This indicates that wave motion in the stratified
ambient plays a relatively small role. Confirmation of this conclusion, based on
evaluating the evolution of potential and kinetic energies in both the current and the
ambient as functions of time, is presented in Ungarish & Huppert (2006). A study of
an intrusive gravity current into the interior of a stratified medium is presented in
Ungarish (2005).

5.4. Some effects of rotation

Rotational effects, which can be dominant, for example, in rapidly rotating systems
in the laboratory, in industrial machines or due to the rotation of the Earth, bring
in the initially counter-intuitive effect that fluid flows at right angles to the pressure
gradient, in analogy with some of my more painful experiences of life, where you
push in one direction and the result goes off in another – a concept often not yet
known by young carefree students. The effect of rotation on gravity currents can
be particularly powerful in the presence of a boundary because a pressure gradient
into the wall can easily be set up and drive a current which hugs the boundary
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stratification parameter S for a high-Reynolds-number gravity current propagating with
velocity u beneath a stratified ambient of depth H and buoyancy frequency N for different
initial depth ratios. The solid curves are the theoretical evaluations of Ungarish & Huppert
(2002) to be compared with the dashed curves which are the experimental results determined
by Maxworthy et al. (2002).

(Griffiths & Hopfinger 1983). These situations have been nicely reviewed in detail by
Griffiths (1986).

An experimental investigation of axisymmetric gravity currents, where boundaries
do not restrict the flow, was carried out at the large rotating system housed in the
Coriolis laboratory at the Laboratoire des Ecoulements Geóphysiques et Industriales,
Grenoble by Hallworth et al. (2001). The major new feature of the results was
the attainment of a maximum radius of propagation, rmax , attained in about one
third of a period of revolution. The observed result had been predicted earlier by
a theoretical investigation of the governing shallow-water equations by Ungarish &
Huppert (1998), who evaluated that rmax ≈ 1.6C1/2, where C = Ωo/(hog

′)1/2, Ω is the
rotation rate and the dense fluid, of reduced gravity g′, was initially contained in a
cylinder of radius ro and height ho. Thereafter the motion in the fluid consisted of a
contraction/relaxation/propagation of the current with a regular series of outwardly
propagating pulses. The frequency of these pulses was observed to be slightly higher
than inertial, independent of ho and g′, with an amplitude of the order of magnitude
of half the maximum radius, as illustrated in figure 9. Analysis of the subsequent
motion (Ωt � 1) and the influence of a slope is discussed in Hunt et al. (2005), along
with some interesting applications to atmospheric fronts.

Most volcanic eruptions are of sufficiently small scale that effects due to the rotation
of the Earth are negligible. However, rotational effects may dominate the infrequent
so-called super eruptions, for which the mass of magma erupted is estimated to exceed
1015 kg, input to the base of the atmosphere at more than 106 m3 s−1. The propagation
of the consequential eruption cloud will be restrained by rotation, but may still reach
diameters of up to 6000 km (Baines & Sparks 2006). The last such super eruption was
of Toba, in Sumatra, about 71 000 years ago. When the next one will occur, to give
volcanologists good data to compare their theoretical models with is not at present
known.
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Figure 9. The radius of the leading edge of successive outward propagating fronts as a
function of time for gravity currents intruding into a homogeneous rotating ambient at
various rates of rotation Ω and reduced gravity g′. The determination of the pulse frequency
is shown as an example in (b).

6. Concentrated flows: mud, slurries and landslides
As the concentration of particles increases, the assumption of low concentration

employed in deriving (4.1) that each particle sediments with its independent Stokes
freefall speed Vs becomes less reliable. New effects must enter, and indeed, as the
concentration becomes very high this situation relates more to mud flows than to
the motion of suspended particles. Partly to investigate this problem, Hallworth &
Huppert (1998) carried out experiments on the instantaneous release of two-
dimensional heavy particle-driven gravity currents down a channel. Relatively low
concentrations, with initial volume concentrations φo in the range 0 < φo < 0.275
were described well by the numerical solutions of (4.1) or the analytical box models
associated with it, with the final runout length of the sedimented deposit increasing
with φo. Beyond this critical initial volume fraction of particles, the resulting dense
current came to an abrupt halt at some point down the channel, depositing the bulk
of its sediment load as a relatively thick layer of fairly constant depth, characterized
by a pronounced steep snout. A very much thinner layer of sediment extended for
some distance beyond the arrest point. This layer was deposited from the subsequent
propagation of a slower moving low-concentration residual cloud and the final runout
length of the sediment layer decreased with increasing φo. This form of motion was
observed for 0.275 < φo < 0.45, this upper limit being the approximate maximum
for which Hallworth & Huppert were able to produce a fluid-like initial volume.
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Amy et al. (2005) have suggested that this change in behaviour is related to a
decrease in the Reynolds number of the flow, with initially high-Reynolds-number
currents moving quickly from a slumping phase into the slowly moving viscous phase
(and by-passing the inertia–buoyancy phase).

Over the last decade, motivated by its obvious natural applications, there has been
considerable research to try to understand these high-concentration flows, exemplified
by mud slides. Large mud flows can occur either in mountainous regions after intense
rains and produce interesting alluvial fans or on submarine continental slopes, where
they contribute to geomorphological evolution. There is hence considerable interest
in both the geological and engineering community in such flows. Unfortunately, in
contrast to all the work so far described in this article, for which it has been assumed
that the constitutive relationship is Newtonian, it is quite definite that mud and
high-concentration slurries are non-Newtonian. But how are they to be described?
A plethora of rheological models have been proposed – power law, viscoplastic,
Bingham plastic, Herschel–Bulkley, etc. Because of these different conceptual models,
it is difficult to carry out systematic experiments which either test or verify any of
these flows. Each person understandably views the possible contributions to the broad
spectrum of science differently, but I find it unsatisfying working in areas where the
fundamentals are on such shaky ground. Nevertheless, there has been considerable
activity in this area, which might be broadly and briefly summarized as follows.

The main new effect that enters is the possibility of a critical yield stress, τo, below
which there is no shear possible in the flow. (There are similarities here to some of
the models for non-Newtonian lava flows, nicely reviewed in Griffiths 2000.) This
leads to a variety of features which are unknown in Newtonian fluids, even in quite
simple situations. For example, a uniform layer of fluid mud can remain stationary
on an incline, if the depth of the mud or the slope of the incline is sufficiently small.
When motion does occur it is generally investigated under two approximations:
either the flow is so slow that inertia is neglected (the more usual case); or so fast
that a boundary-layer approximation is appropriate. A variety of different initial
configurations have been solved for the motion of the mud and its final shape on a
horizontal surface, down an inclined plane and over a gently sloped conical surface,
representing a shallow basin or hill (Mei, Liu & Yuhi 2001; Yuhi & Mei 2004). Much
further work in this area needs to be done before a good scientific understanding
has been obtained and the results can be applied to the all-important area of hazard
assessment, with the potential to save hundreds of thousands of lives and millions of
wasted dollars.

7. Granular flows
The motion of granular media plays an important role in areas as diverse as

agriculture, earth sciences and the pharmaceutical industry. The flow from a grain
hopper for different shapes of the granular contents and the destructive collapse of
such a hopper during flow are examples in industry on which millions of pounds
per year are expended. The flow of granular material is arousing enormous research
interest at the moment, as exemplified by the interesting broad reviews of Jaeger,
Nagel & Behringer (1996), Kadanoff (1999) and de Gennes (1999). Partially motivated
by this interest, Gert Lube, Steve Sparks, Mark Hallworth and I conducted numerous
experiments in which various granular materials, initially contained in a vertical
cylinder, were rapidly released onto a horizontal surface to spread out unhindered
over it (Lube et al. 2004, 2005, 2006). These studies and one carried out independently
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by Lajeunesse, Mangeney-Castelnau & Vilotte (2004) have initiated many further
investigations by other groups, whose contributions will be summarized at the end of
this section. While not quite a fluid-mechanical gravity current, these flows are driven
by density differences and have concepts in common with fluid-mechanical gravity
currents, as outlined below.

Previous work on granular flows has considered thin quasi-steady layers flowing
down inclined planes above the natural angle of repose for the grains, which is
around 30◦ for most granular material. The experimental results (see for example
Pouliquen & Forterre 2002) and equations developed to describe the flow (see for
example Savage 1998) both depend on the basal and intergranular friction, with
the equations incorporating empirical rheology expressions. Our approach was quite
different in that it concentrated on rapid time-dependent flows for which both basal
and intergranular friction are relatively immaterial, as is the situation in most natural
and industrial flows. Part of our aim was also to relate the experimentally measured
quantities directly to the appropriate input parameters.

The main materials we used in our experiments were dry sand and salt, but, for
comparison purposes, we also conducted experiments with couscous, rice and sugar,
all of which have a quite different grain size and shape. Nevertheless we found no
significant difference in the resulting spreading relationships. The horizontal plane
used was either wood, a smooth surface of baize lying on wood, a smooth transparent
Plexiglas plane, glass or a rough plane of sandpaper. The detailed spread of the
granular material was also independent of these surfaces because a few grains are
quickly deposited on the base and the remaining grains flow over them, as described
in more detail below. However, there are two extremes: perfectly smooth and round
balls would travel a very long way, partially by rolling; regular blocks would not
propagate at all – just like a stable tower of building blocks.

For the axisymmetric experiments eight different cylinders were used, while two
different sorts of two-dimensional channel experiments were conducted. In the first
set of experiments in a channel, the set-up was symmetrical, with a column of initial
width 2di collapsing, symmetrically, in opposite directions along the channel. In
the second, a column of width di supported by the vertical wall at the end of the
channel collapsed (unsymmetrically) along the channel in one direction only. Some
experiments were recorded on a digital high-speed video at 500 frames per second
and later analysed. After all motion had ceased, the profile of the resultant deposit
was measured to find the final runout radius, r∞, or runout length, d∞, central cone
height, h∞, and the steepest incline, α, of the upper surface.

For both geometries the collapse exhibited two sequential flow regimes. In the
first, and more important, regime the free fall of the released grains was followed by
lateral spreading of the grains with a static layer beneath a layer flowing at constant
shear. The internal interface separating these two layers propagated mainly vertically
through the granular medium until it reached the free surface, whereupon all bulk
motion ceased. The second flow regime consisted of thin granular avalanches at the
upper free surface, which slightly rearranged the top of the deposit. The first regime,
and thus the main motion of the grains, was determined by inertial forces with
intergranular frictional forces only playing a role in the second, avalanching regime.

The external input parameters describing the experiments are the initial radius ri ,
or width di , the initial height hi , and the gravitational acceleration g. From the two
input variables with dimensions of length, an equivalent set can be defined which is ri

or di , and the non-dimensional aspect ratio, a, defined by either hi/ri or hi/di , which
is the important non-dimensional parameter describing the flow.
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Figure 10. Non-dimensional final runout for the axisymmetric and two-dimensional collapses
as functions of the aspect ratio. The curves are best fits and the symbols experimental data.
The solid dots denote results from experiments with H > 0.

For all values of a there was a central undisturbed cone of material which did not
partake in the motion, whose angle with the horizontal was close to 60◦, corresponding
to an aspect ratio of 1.7. This can be interpreted as an internal friction angle for the
material. The value of α gradually decreased with a, to a value of 22 ± 2◦ for the
axisymmetric and 27 ± 2◦ for the two-dimensional situation (Thompson & Huppert
2006).

The quality of the observational data and the similarity of the results for the
different materials suggest that, with the use of dimensional analysis, the data can
be collapsed in a systematic way. Our ability to collapse all the data using only ri

(or di in the two-dimensional geometry), a and g, and not any material properties,
is a robust test for the assumption that no additional material property, such as the
friction between individual grains, is needed to describe the motion.

The difference between the initial and final radius, δr = r∞ − ri , or δd = d∞ − di in
the two-dimensional geometry, must be expressible as δr = rifA(a) or δd = difD(a),
where subscripts A and D refer to the axisymmetric and two-dimensional situations
respectively. (This non-dimensionalization is formally correct in the two-dimensional
geometry only if the width of the channel, W , considerably exceeds hi, di and δd .)
Plots of fA and fD are given in figure 10. For a < 1.7 (1.8 in the two-dimensional
situation), because there is no motion of the inner region, the resultant expression
must be independent of ri (or di), which requires that fA(a) and fD(a) ∝ a. From
the data in figure 10 we determine that the constants of proportionality which best
fit the data are 1.3,1.2 and 1.6 for the axisymmetric, two-dimensional symmetrical
and unsymmetrical situations respectively, with the differences reflecting the different
geometries. For a > 1.7 (1.8) the best-fit power law to the data for all grains is given
by f (a) = 1.6a1/2, fDS(a) = 1.9a2/3 and fDU = 2.2a2/3, where the subscripts S and
U refer to the (two-dimensional) symmetric and unsymmetric situations respectively.
The difference between the power laws for the axisymmetric and two-dimensional
situations reflects the different metric or geometry between the two situations.

The final height at the centre is similarly expressible as either h∞ = riηA(a) or
diηD(a). Figure 11 presents all the data for h∞/ri and h∞/di as functions of a. For
a < 1.7 (1.2 in the two-dimensional situation), h∞ = hi , and so η(a) = a, as indicated
by the data. In the axisymmetric geometry for 1.7 < a � 10 the best-fit power law
to the data is given by ηA(a) = 0.88a1/6. For a � 10 there is a clear indication
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Figure 11. Non-dimensional maximum final height (at the centre of the pile for the
axisymmetric and two-dimensional symmetric situations) as a function of the aspect ratio a.

that h∞ decreases with increasing a. This is in response to a wave that originates
from the centre and removes material outwards. Unfortunately, the data are a little
too scattered to be quantitatively analysed with confidence. In the two-dimensional
geometry for a > 1.15, ηD ∝ a2/5 with the constant of proportionality equal to 1.1
and 1.0 for the symmetric and asymmetric cases respectively.

As a increases it becomes more and more difficult to release the grains
instantaneously – too many of them initially stick to the walls as the cylinder is raised
and then flow out. To counter this, Lube et al. (2004) carried out experiments with
the granular media, of initial height hi , raised a height H before a constraining plug
was released. Somewhat to our initial surprise the results for r∞ and h∞, considered
now as functions of the extended aspect ratio aH = (H + hi)/ri dovetail well with
the results for H = 0, as indicated on figures 10 and 11. The interpretation is that
the final extent of the granular deposit and the final height at the centre are only
dependent on the maximum height hi + H and the initial radius ri , and not on most
of the material below the maximum height. The deposit shape, however, must depend
strongly on the initial volume of material, which determines the final volume of the
deposit.

So far gravity g has not entered our expressions because it is the only input
parameter for which time is involved in its dimensions, and δr (or δd), h∞/ri (or h∞/di)
are both independent of time. The value of g will affect the total time for collapse,
t∞, which is defined as the time between the initiation of the experiment and that at
which the flow front stops propagating. The high-speed video allowed us to determine
t∞ reasonably accurately. By dimensions, it must be of the form t∞ = (ri/g)1/2ψA(a)
(or (di/g)1/2ψD(a)) for some function ψ(a). Plots of both t∞/(ri/g)1/2 and t∞/(di/g)1/2

as functions of a are presented in figure 12. As before, for small a, expressions
for ψ(a) independent of ri or di require ψ(a) ∝ a1/2, which is consistent with the
data. For large a the best-fit power law through the data yields ψA(a) = 3.0a1/2 and
ψD(a) = 3.3a1/2, which indicate that t∞A = 3.0(hi/g)1/2 and t∞D = 3.3(hi/g)1/2, both
still independent of ri or di even for large a. Note that the time taken for a particle
to fall a height hi under gravity is (2hi/g)1/2, which is just less than a half of either
of the t∞.

Further insight on the flow characteristics is obtained by an analysis of our
kinematic data on the position of the flow front as a function of time. For all
flows there was a primary acceleration phase during which the acceleration was
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approximately constant, with values between 0.25 g and 0.3 g for the axisymmetric
geometry and 0.75 g for the two-dimensional situations. For a < 1.7 (or 1.5 for
the two-dimensional situations) this acceleration phase was followed by a phase
of deceleration which came quite abruptly to a halt. For larger values of a these
two phases were separated by a phase of constant velocity of the flow front whose
duration increased with increasing a. This phase of constant velocity is analogous to
the evolution of a fluid gravity current spreading at high Reynolds number, which
also goes through a stage of constant velocity (Huppert & Simpson 1980). A fluid
current then adjusts under a balance between buoyancy and inertial forces, spreading
like t1/2 (cf. (3.1)) – the same result as obtained for the granular collapses described
here. This comparison, determined by using quantitative relationships to describe
the motion of the granular medium that are closely analogous to those used to
describe the motion of density currents of Newtonian liquids, further strengthens our
argument that intergranular frictional effects play a negligible role until the abrupt
halt commences.

Motivated by our axisymmetric experiments, Balmforth & Kerswell (2005) carried
out similar two-dimensional experiments. They focused on two materials with
very different frictional properties, using mainly grit, with an overall mean size
of approximately 1 mm, and smooth glass beads of mean diameter 0.8 mm. They
conducted experiments both in a thin slot, where frictional effects at the walls
would be dominant throughout the motion, and between widely spaced walls. Their
experimental results for the latter are generally similar to ours, except they stress that
they find a significant difference in the pre-multiplicative constants for the power-law
relationship for the two grains used. This is not surprising, since smooth spherical
balls would spread further, by rolling over both the horizontal surface and each
other. They compare their experimental results with a shallow-water model, inputting
suitable values for the friction coefficient, developed in Kerswell (2005), and find only
qualitative agreement.

Obtaining the spreading relationships that the experiments have indicated remains a
challenge for the future. A difficulty is that for at least half of the flow the assumptions
of shallow-water theory, as applied by some to this problem, are false. An interesting
counter example is offered by the imaginative study of Larrieu, Staron & Hinch (2006)
in this volume. They consider the first part of the collapse to consist of the free fall of
the particles under gravity (and do not pretend that this can in any way be described
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by the shallow-water equations). They then apply the depth-averaged shallow-water
equations for the remainder of the flow, gradually adding the grains to the layer
at r (or x) = 0 with no horizontal momentum. The results are in good agreement
with the experiments in the different geometries, though in detail this requires some
adjustment of the two friction coefficients that appear in the equations. Larrieu et al.
(2006) do not clarify how sensitive the results are to all of these assumptions. I am
sure they intend to carry out further work along this line.

In the meantime, an additional clue to understanding the emplacement we have
observed may come from an interpretation of the moving internal interface which
separates static from flowing grains. It has been suggested that granular materials can
be considered in two states (Jaeger et al. 1996): a static solid state, where intergranular
forces at particle faces give the material strength; and a liquid state, exemplified by
granular flows and fluidized beds, where the particles are in an agitated state and the
system has negligible strength. The abrupt cessation of the motion of the granular
flows that we observed can be likened to a phase change between two states (Huppert
1990). In accord with the characterization put forward in Jaeger et al. (1996), the
change of state can be envisaged as a kinetic process analogous to solidification of a
true liquid. In the case of a granular medium, we suggest that as the flow decelerates,
the granular temperature falls below a threshold value and frictional interactions
between particles become dominant and the granular material converts to a static
solid (or deposit) at the moving internal interface.

This analogy can be pursued analytically by considering solidification at low values
of the Stefan number, S = L/(cp�T ), where L is the latent heat, cp the specific heat
and �T the temperature fall needed for the fluid to solidify. Latent heat effects at the
moving solidification interface are essential for the fluid to solidify, just as frictional
effects are essential for the flow to cease. However, in the limit of low Stefan number,
the time for solidification is independent of the explicit value of the latent heat, just
as, we suggest, the time for motion to cease is independent of the friction.

An alternative, numerical approach to the problem would be to employ individual
grain-following computations, which involve as many as 108 grains. However, these
have generally produced results which are heavily dependent upon intergranular
friction and the exact shape of the grains (Zenit 2005; Staron & Hinch 2006).
Nevertheless, it might be interesting to pursue such an approach.

8. Conclusions
Since the propagation and evolution of gravity currents was first quantitatively

analysed more than sixty years ago, a lot has been determined. The rates of
propagation under many different situations have been evaluated, as described in the
various sections of this article. The subject area has seen considerable active research
over the last thirty years or so, primarily due to the influence of the giant names
in the subject, including von Kármán (1940), Benjamin (1968) and Simpson (1997).
Part of the drive for the research has come from the natural applications to flows in
the oceans, atmosphere, and Earth’s interior (Huppert 1986; Kerr & Lister 1987) as
well as to many engineering and industrial problems.

Many colleagues have helped me to understand the motion of gravity currents. I
am grateful to each of them for their patience and wisdom. G. I. Barenblatt, M.A.
Hallworth, R.C. Kerr, R. Kerswell, P. F. Linden, G. Lube, T. Maxworthy, A. Slim,
R. S. J. Sparks, M. Ungarish and M.G. Worster kindly read an earlier version of
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this manuscript and provided useful reviews with suggestions for improvements. My
research is supported by a Royal Society Wolfson Merit Award.
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